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Abstract
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprec-
edented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health
challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus
pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a
small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites.
Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral
mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different
stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and
the activation of specific molecular mechanisms upon viral entrance.
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Background

The global emergence of human coronavirus disease, namely
COVID-19, with severe bronchopneumonia and respiratory
symptoms raised concerns about public health at the begin-
ning of 2020 [1–3]. According to released statistics, SARS-
CoV-2 is easily spread from person-to-person with deep so-
cioeconomic influences on healthcare systems [4, 5]. The rap-
id worldwide spread of COVID-19 between human societies

has led to enormous pressure on the health care system and
changed the auspices toward therapeutic priorities [6].
Transplant patients are a certain population that needs unique
and special health care systems [7]. Considering the urgent
need for potent regenerating cells and biological products, this
raises the question of whether stem cells within different tis-
sues, especially bone marrow stem cells, could transmit the
SARS-CoV-2 virus from person-to-person. In other words,
are there any differences or similarities in the susceptibility
of differentiated and undifferentiated cells to viral infections
such as COVID-19? Of course, here is assumed all hygienic
principles are toughly respected during cell transplantation to
minimize the transmission of COVI-19 among individuals.

In this regard, the present review article aimed to address
the possible differences in antiviral defense system between
differentiated and undifferentiated cells. The logical answer to
this question can acknowledge us to exploit policies against
this COVID-19 in healthy donors and transplant recipients.

COVID-19 Pathophysiology and Mechanism
of Action

SARS-CoV-2 belongs to the B lineage of the β-coronaviruses
[8]. The virus is enveloped in a spherical nucleocapsid. The
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genomic pool of SARS-CoV-2 consists of + ssRNA in associa-
tion with nucleoprotein inside a capsid shell [9]. At the external
surface of the envelope, numerous projections (Spike proteins)
and glycoproteins (hemagglutinin) are seen. Using spike pro-
teins, the SARS-CoV-2 could attach to surface receptor ACE2
on the target cells (Figs. 1 and 2) [10]. In general, infection with
SARS-CoV-2 contributes to the onset of inflammation in the
human upper and lower respiratory tract [3]. Nearly a few
months after the onset of COVID-19 disease, people with acute
atypical respiratory disease and pneumonia refer to the hospitals
and clinical settings. According to clinical observations and the
susceptibility of patients, mild, moderate, severe, and critical
forms of the COVID-19 disease have been recorded [8]. In the
mild form, minor respiratory and gastrointestinal symptoms are
common. The patients with moderate form are diagnosed with a
lack of prominent hypoxemia while CT imaging exhibits some
lesion inside the pulmonary tissue. In the severe forms of

COVID-19 disease, patients suffer from severe hypoxemia and
acute pneumonitis. With the progression of symptoms and the
occurrence of critical form, an acute respiratory distress syn-
drome was initiated followed by renal and myocardial injury,
encephalopathy, and coagulation disorders [8]. The surface
ACE2 receptors account for the cellular entry of SARS-CoV-2.
This virus uses the serine protease termed TMPRSS2 for priming
S protein [11]. Like other cells, the ACE2 receptor is present on
the surface of respiratory epithelial cells which makes these cells
more susceptible to SARS-CoV-2 infection rather than cells with
low levels of ACE2 receptor [12]. This coronavirus harbors a
nucleocapsid with 30 kb + ssRNA [13, 14]. The whole-genome
sequence of SARS-CoV-2 is greatly identical and unique [15,
16]. It has been thought that the main pathological effects of the
coronaviruses correlate with + ssRNAwith a 5′-cap structure and
3′poly-A tail [17–19]. After entry into the target cells, RNAplays
as a template sequence to translate the non-structural

Fig. 1 SARS-CoV-2 is encased
within a fatty membrane
(envelop) and has a very large
genomic pool with nucleotides
around 3 × 104. The viral struc-
ture is composed of membrane
protein, nucleoprotein, envelope
small membrane protein, hemag-
glutinin, single-strand positive
sensel RNA, and spike glycopro-
tein (a). Two types of cup-shaped
spike glycoproteins subunits S1
and S2 are present on the viral
surface which attach the viral
body to the host cellular receptor
ACE-2 (b). Membrane protein =
M; Nucleoprotein = N; Envelope
small membrane protein = E; and
Hemagglutinin = HE. The illus-
tration was created with
BioRender.com
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polyproteins like replicase polyprotein 1a and 1ab [20]. The
complex of polyprotein 1a/1ab and sgRNAs sequences acts as
a replicon-transcription machinery system that is surrounded by
a primary double-membrane vesicle [21]. The transcription reg-
ulatory sequence, namely ORF, controls the production of
subgenomic mRNAs [22, 23]. Among different ORFs identi-
fied in the whole genome segments, the sequence located be-
tween the ORF1a and ORF1b plays a critical role in the tran-
scription and translation of polypeptides 1a and 1ab. These
proteins are further modified by viral chymotrypsin-like prote-
ase, Mpro, and two papain-like proteases [10, 14]. Along with
ORF1a and 1b, other ORFs participate in the synthesis of dif-
ferent structural polypeptides such as envelope, external spike,

viral membrane peptides, and nucleocapsid [24]. The previous
experiments have shown that the variety of protein products is
closely associated with the activity of sgRNAs [25–27]. Once a
cell is infected with coronaviruses, the cytopathic effects are
detectable in the host cells due to the activity of both viral
structural and functional proteins. In support of this notion,
detailed investigations of viral pathogenesis revealed that the
non-structural proteins could prohibit the innate immune sys-
tem activity [28]. It has been established that the activity of
spike glycoproteins is essential to make a physical connection
between virions and the host cell receptor. Spike proteins are
classified into main subunits namely S1 and S2 [29]. The sub-
unit S2 possesses a transmembrane domain and a cytoplasmic

Fig. 2 The proliferation of
SARS-CoV-2 within the host
cells initiates soon after attach-
ment of S protein (S1 and S2) to
the cell membrane-bound ACE-2
receptor. Allosteric changes in S
protein promote viral envelope
fusion with the cell membrane
through endosomal signaling.
Inside the cells, the genomic pool
is released, transcribed, and
translated to synthesize various
components of viral structure.
Finally, viral proteins and genome
RNA are assembled into virions
in the endoplasmic reticulum and
Golgi apparatuses and transported
into microvacuoles. In the next,
step, the microvesicles containing
virions are released. After infec-
tion of host cells with COVID-19
nanoparticles, the release of vi-
rions promotes pyroptosis and
massive cellular damage. The
neighboring cells such as endo-
thelial cells, dust cells (alveolar
macrophages) start to release an
array of cytokines and
chemokines.With the progression
of cellular damage, blood lym-
phocytes (either T and B), as well
as macrophages, are recruited to
the site of infection.
Accumulation of immune cells
exacerbates the inflammatory re-
sponses by the continuous pro-
duction of inflammatory cyto-
kines. Interleukine 10: IL-10;
Interleukine 6: IL-6; granulocyte
colony-stimulating factor: G-
CSF; Macrophage inflammatory
protein 1α: MIP1α; Interferon-
gamma: IFNγ; Interleukine 2: IL-
2; Tumour necrosis factor-α:
TNF-α. The illustration was cre-
ated with BioRender.com
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tail with a fusion-like activity and is highly conserved among all
members of the family Coronaviridae [30]. On this basis, many
pharmaceutical interventions target S2 as the main anti-viral
therapeuticmedication [31]. The estimatedmutation rate is high
within the genomic pool of SARS-CoV-2 and other RNA vi-
ruses which supports rapid expansion and transmission to hu-
man and other species [32]. The proliferation and site-direct
activity of SARS-CoV2 in the host cells are set actually by
absolute mutations. In most COVID-19 confirmed cases, se-
vere pulmonary inflammation has been reported to coincide
with excessive activity of immune cells [33]. Polyclonal recruit-
ment of immune cells with disturbed activation thresholds and
cytokine release contribute to irreversible tissue injury (Fig. 2)
[34, 35]. Cytokine array analysis has revealed that IL-6 is the
ringmaster of this story. B lymphocytes and numerous cells
within the tissues are capable of IL-6 production and release.
This cytokine accelerates the differentiation of B lymphocytes
into inflammatory cells and increases a fraction of cell popula-
tions required for acute phase reactions [36, 37]. Elevated local
levels of IL-6 in the target tissues after infection with SARS-
CoV-2, mainly lungs, trigger the synthesis and release of acute-
phase proteins and intensify pathological changes [38].

Antiviral Mechanisms of Stem Cells

As a common belief, stem cells are undifferentiated multipo-
tential cells with the potential to commit toward multiple cell
types. This capacity is referred to as trans-differentiation [39].
These cells commonly enter the asymmetrical division to

produce a large number of the same cell phenotype to self-
renew and maintain tissue homeostasis [40, 41]. The main
question is whether the sensitivity of stem cells and other cell
types varies against certain viral infections and there are dis-
tinct sets of antiviral responses and innate immunity in stem
cells enabling them to reduce the risk of viral infection. If we
hypothesize an equal probability between differentiated and
undifferentiated cells of being infected by a certain virus, thus
stem cell sources will be eliminated in the not too distant
future The potential reasons why the prominent antiviral re-
sponses are integral to stem cells supported by evidence has
been gathered from previously published studies [42]. Given
the inability of viruses like myxoma virus, West Nile virus,
and cytomegalovirus, to infect stem cells, one could propose
that these cells are armed with rapid anti-viral clearance sys-
tems [42, 43]. Such defense shields allow stem cells to be in a
constant state of health after exposure to different external
stimuli (Fig. 3; Table 1) [44–46]. This notion also derives
from the fact that stem cells can produce functional cells and
are capable of repopulating injured cells under pathological
conditions [47]. Of course, stem cells are variably permissive
and susceptible to different viruses and favor diverse re-
sponses after infection. For instance, it has been shown that
human hematopoietic stem cells could be infected with retro-
viruses and herpesviruses [48]. This process could lead to the
selective loss of certain stem cell types in a distinct niche,
showing relative resistance of different stem cells to certain
viral infections. Preliminary evidence of human NSCs infect-
ed with cytomegalovirus was presented previously. Although
NSCs were permissive for cytomegalovirus, the replication of
the virus was prohibited at the levels of the immediate-early

Fig. 3 different intracellular
mechanisms used by stem cells to
inhibit the proliferation and
expansion inside these cells. The
illustration was created with
BioRender.com
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Table 1 List of antiviral mechanisms in different stem cell types

Stem Cell type Effector Mechanism of action Ref

Mouse ESCs, PSCs, hiPSCs,
TSCs, MSCs, NSCs, and PnSCs

RNA interference (RNAi) pathway Viral RNA synthesis ↓ [42, 61, 62]

Mouse ESCs, iPSCs, PSCs Dicer-1 and Dicer-2 miRNA biogenesis and siRNA biogenesis↑ [63–65]

Human iPSCs, TSCs, mouse
ESCs, iPSCs,

Argonaute (Ago) Formation of RNA-induced silencing
complex (RISC) ↑

[42, 66]

Somatic stem cells, ESCs, TSCs,
Skeletal stem cells, iPSCs,
MSCs, NSCs, and PnSCs

Component 3 Promoter of RISC Activation of RISC ↑, Argonaute2
(Ago2)-associated RNAi↑

[62, 67]

iPSCs, MSCs, NSCs, and PnSCs Ars2 and heat shock proteins siRNA biogenesis↑, RNA-protein complexes ↑,
Conformational changes during RISC loading↑

[68–70]

SoSCs piRNA Antiviral defense↑ [69, 71]

ESCs RNase-III enzyme Dicer-2 Recognition of cytoplasmic dsRNA↑ [72, 73]

ESCs and respiratory epithelial
cells

miRNA miRNA-induced silencing complex (miRISC) attach-
ment to target sites in the 3’ untranslated regions
(UTR) of mRNAs↑, translational repression↑, de--
adenylation↑, and mRNA decay↑

[74–76]

NSCs interferon-α/β receptor (IFNAR) JAK-STAT pathway↑, ISGs↑ [77–79]

Primary stem cells, NSC, Human
ESCs

Interferon stimulated genes (ISGs) Viral replication↓ Adaptive immune response↑,
transcription of Mx1, and RIM5↓, translation of
PKR, IFIT family members, OASL↓, RNA
degradation and apoptosis (RNase L)↑

[80, 81]

NSCs, MSCs, mouse ESCs Type I IFNs Chemokine release↑, Antigen presentation by innate
immune cells↑, antibody production↑, and T cell
responses↑

[82, 83]

NSCs, MSCs, mouse ESCs TLR3, RIG-I, and MDA5 Recognition of viral dsRNA↑, IRF3↑, IRF7↑, and
NF-kB ↑, IFN ↑

[78, 83, 84]

HSCs, ESCs, iPSCs, germ layer
cells

ISG12 Cell death ↑, Cytochrome C release↑, Caspase
activation↑

[46, 85]

Mouse ESCs, HSCs, ESCs, iPSCs OAS1 Innate immune response to viral infection↑, RNase L
activity ↑, Viral RNA degradation↑

[46, 86–88]

iPSCs, ESCs, MSCs, NSCs
derived from iPSCs

DNA sensors absent in melanoma 2
(AIM2)

Activation of the NLRP3 inflammasome↑, production
of IL-1β↑,

[89–91]

ESCs, iPSCs Protein kinase R (PKR) Virus translation↓, Protein phosphorylation↓, Innate
immune

responses↑

[92, 93]

Human ESCs, HLCs, multipotent
germ layer cells, human hiPSCs,
TSCs, HSCs, NSCs, MSCs

IFITM1, IFITM3, EIF3L, and BST2 Replication of viruses↓ Cytosolic entry↓ [94]

Human ESCs, HLCs, multipotent
germ layer cells, human iPSCs,
TSCs, HSCs, NSCs, MSCs

IFN Response and IFN pathway Phosphorylation and nuclear import of IRF-3↑,
Post-transcriptional processing of cellular antiviral
pre-mRNAs↓ dsRNA binding properties↓, RNA
processing↓, trafficking ↓, translational ↓

[94, 95]

Bone marrowMSCs, HSCs, ESCs,
iPSCs

Mitochondrial antiviral-signaling pro-
tein (MAVS)

Activation of NF-kB, IRF3 and IRF7 and ISGs↑ [64, 96, 97]

HSCs, ESCs, iPSCs, germ layer
cells.

IFIT family Recognition of 5ʹ triphosphate ↑, Viral protein
translation↓

[46, 98–100]

Mouse ESCs, and human ESCs Ribonuclease L (RNase L) Single-stranded RNA degradation in U-rich
sequences↑, Antiviral innate

Immunity↑

[101–103]

Human ESCs, HLCs, Multipotent
germ layer cells, human iPSCs,
TSCs, HSCs, NSCs, MSCs

Interferon regulatory factor 3 (IRF3) Glial cytokine expression↑, pro-inflammatory cyto-
kines ↓, Anti-inflammatory or immunoregulatory
cytokines↑

[46, 104]

Glioma stem cells Interferon Regulatory Factor (IRF-7) Antiviral responses ↑ and NF-κB expression↓ [105, 106]

CySCs, Germline stem cells JAK/STAT pathway Upregulation of ISGs↑ [107, 108]

HSCs, ESCs, iPSCs, germ layer
cells.

Interferon-inducible transmembrane
proteins (IFITMs)

Cytosolic entry↓ [46, 109–111]

ESCs, HSC, multipotent adult stem
cells, BMSCs, Skeletal stem
cells, SoSCs

Bone marrow stromal antigen 2
(BST-2)

Inoculation site viral load↓, Viremia ↓, and lymphoid
tissues tropism↑

[112, 113]
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gene expression [43]. Monitoring the number of viral ge-
nomes in the infected NSCs using sensitive gene-analysis
methods showed that the average viral genome copy number
was diminished over time but was not eliminate, suggesting
viral genome integration with the DNA [43]. Regarding the
existence of a complete machinery system for viral replication
in mature cells, this phenomenon can lead to the propagation
of the virus from stem cells to the neighbor mature cells,
showing that these cells might act as a reservoir for the cyto-
megalovirus. If we propose the lack of highly resistant mech-
anisms in stem cells to the viral infections, the reduction of
stem cell pool per se decreases the regeneration potential of
tissues and triggers subsequent aging and functional defects
[49]. In this line, several intricate resistance mechanisms with
prompt activity are mandatory to support host stem cells at the
time of viral infections thus favors the stem cell resistance
hypothesis [50, 51]. Yet, this capacity, which without a doubt
is of interest in regenerative medicine should be determined
by further investigations. Perhaps it should be noted that the
existence of a unique genomic profile and proteomic machin-
ery in stem cells potentiates these cells to maintain and restore
normal physiological activity after viral infections [52]. In
particular, it confirmed that the stem cells do not express spe-
cific receptors or limited areas of the cell membrane are coved
with target receptors. These features limit direct contact and
crosstalk between the viruses and stem cells [53, 54]. Mutual
crosstalk between the different cellular constituents of tissues
(stem cells and differentiated cells) has been shown in the
local microenvironment namely niche [55]. Stem cells are in
close contact, either paracrine or juxtacrine manner, with the
neighboring cells to sense the external clues, exchange the
biological information, and respond appropriately to the inju-
ries [56, 57]. Even though, if we consider the existence of
unique anti-viral resistance responses in stem cells, the infec-
tion of differentiated neighboring cells can, to a lesser extent,

affect the normal function of stem cells [58]. Yet, the detri-
mental effects of viral infections on differentiated cells and the
dynamic interaction of these cells with stem cells have not
been elucidated completely. Commensurate with these de-
scriptions, it would not be nonsense to say that antiviral resis-
tance is vital to each cell type and is distinctively regulated
between stem cells and differentiated cells [42, 59, 60].
Progress in our data about stem cell biology has highlighted
the crucial impact of several anti-viral defense mechanisms in
these cells once exposed to the viruses. In the below sections,
we highlighted the putative anti-viral mechanisms used by the
stem cells.

Interferon Associated Signaling Pathways and
Antiviral Activity in Stem Cells

Most of the cells use different mechanisms to prohibit the
infection with various intracellular agents. IFN signaling cas-
cade is the cellular defense in the frontline which is commonly
engaged by most cell types [129, 130]. IFN signaling is acti-
vated against the dsRNA of different viral masses except for
retroviruses. Immediately after attachment of the virions to
cell membrane-bound receptors, such as TLR-3, MDA5, and
RIG-I, the expression of downstream effectors, mainly IRF-3,
-7, and NF-κB increased, leading to bulk production of IFNs
[84]. In the next step, IFN is released from the target cells and
alert cells in autocrine and paracrine manners [131]. Upon IFN
binding to receptors, activation of the JAK/STAT pathway
can lead to the expression of multiple genes commonly termed
ISGs [78]. ISGs initiate diverse intracellular anti-viral mecha-
nisms inhibiting the cellular machinery that regulate virus
proliferation. Importantly, the stimulation of target cells with
IFN activates specific proteins which in turn limit horizontal
transmission of viruses through the cell membrane [132]. For
instance, the IFITM protein, as innate effector proteins, restrict
cell entry of enveloped viruses. Along with IFITM activity,

Table 1 (continued)

Stem Cell type Effector Mechanism of action Ref

Human ESCs, human hiPSCs,
mouse ESCs

Suppressor of cytokine signaling 1
(SOCS1)

IFN signaling↓, phosphorylation of type I IFN receptor
↓ JAK kinase activity↓ phosphorylation of STAT1↓

[114, 115]

NSCs, MSCs, ESCs IFN-β Virus entry↓, Transcription↓, Translation↓, Genome
Replication↓, Assembly↓, and egress ↓

[83, 116]

NSCs, MSCs, mouse ESCs IFN-λ1 and -λ2 Replication of virus ↓, Cytotoxic activity ↓, CC
chemokine expression ↑, Viral entrance ↓

[83, 117, 118]

ESCs, iPSCs, NSCs NF-κB NF-κB-LTRs attachment↑, Replication early during the
viral life cycle↑

[119–121]

Human ESCs, HLCs, multipotent
germ layer cells, human iPSCs,
TSCs, HSCs, NSCs, MSCs

RNA helicase MOV10 Retro-transposition and Interferon-stimulated genes ↓,
Repression of

ERVs beyond antiviral proteins↑

[46, 122, 123]

HSCs, CD34+ stem cells, ESCs,
iPSCs

small interfering RNAs (siRNAs) Sequence-specific defense against viruses and
transposons, Bind to Argonaut protein↑

[124–128]

Bonemarrow stromal cells: BMSCs; Hematopoietic stem cells; Hepatocyte-like cells: HLCs; Induced pluripotent stem cells: iPSCs; Mesenchymal stem
cells; MSCs; Neural Stem Cells; NSCs; Pancreatic stem cells: PnSCs; Somatic cyst stem cells: CySCs; Somatic stem cells: SoSCs; Tissue stem cells:
TSCs
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another peptide so-called BST2 prohibits the evasion of vi-
rions from infected host cells to other cells [133]. At the ge-
netic levels, IFN ignites the production of non-coding RNAs
consisted of long non-coding RNAs, microRNAs, and circular
RNAs [134].

Despite the occurrence of these molecular pathways inside
most mature cells, it is thought that stem cells are exceptional to
some extent concerning viral infection. Evidence points out the
intensity and durability of IFN-related responses are different in
stem cells than that of most mature cells. The data suggested the
absence of IFN synthesis in stem cells after the exposure to
active viral particles or incubation with poly I: C (a mimic of
dsRNA) [135]. This apparent discrepancy could be explained
by different factors. It should be suggested that strong tolerance
and higher thresholds are seen in stem cells for viral infections
and these cells could lower the concentration of cellular effec-
tors which are critical for viral replication [43].

Based on a recent study, it has been shown that the absence
of effective IFN-related responses in multipotent cells is
linked to a lack of diverse signaling effectors [86, 136].
Unlike immortalized cells such as HeLa cells, human ESCs
harbor lower contents of dsRNA biological sensors such as
TLR3, MDA5, OAS1, and PKR [86]. Attempts to show the
potential importance of stemness in restricting viral infection
did reveal that stem cell commitment toward hepatic and neu-
ral lineages induces the production of dsRNA sensors such as
MDA5 and OAS1, which provides essential elements for viral
replication [115]. Of course, the potency of negative regula-
tors in viral replication in different stem cells should not be
neglected [115]. As described byHong et al., the basal level of
SOCS1, an inhibitor of the JAK/STAT pathway, is more in
ESCs compared to most of the differentiated cells [115].
Unlike most cells, canonical IFN-associated responses have
been determined in stem cells against viral infections.
Although some controversial studies showed that ESCs and
embryonic carcinoma cells could not produce type I IFN fol-
lowing exposure to viruses and displayed a very faint reaction
against exogenous IFN [115, 135, 137]. These data show that
the antiviral activity of stem cells is not completely dependent
on canonical IFN signaling [115, 135, 137]. This apparent
discrepancy may relate to the fact that tissue-dependent activ-
ity and the activation of quiescent stem cells could affect IFN-
based anti-viral mechanisms [115, 135, 137]. Further investi-
gations are highly demanded to address the ambiguity. Lin
and co-workers confirmed the potency of human NSCs to
synthesize IFN-β and -λ1 after incubation with dsRNAmimic
and activation of ISGs [83]. All effectors like RIG-I, MDA5,
and TLR3 are induced in human NSCs in the presence of
dsRNA mimic and exogenous IFN-β [83]. In NSCs co-
cultured with Zika, Japanese encephalitis viruses, RIG-I-
associated IFN-β expression has been detected [83]. Hong
and co-workers declared mouse and human ESCs, and human
iPSCs exhibit interferon stimulation resistance [115].

However, the critical role of ISGs and their association with
the cellular innate immune system remains unidentified [138,
139]. Calling attention, a limited subset of ISGs is produced in
human, chimpanzee, and mouse ESCs, iPSCs, and adult stem
cells [46, 140]. The expression profiling of ISGs varies be-
tween the different stem cell types. However, the basal levels
of the ISCs are diminished during commitment toward mature
cells and maintain at the minimum levels. It was postulated
that some ISG products have a close association with stem cell
fate [141, 142]. Hence, the mature and differentiated cells
respond differently to the IFN [143]. Similar to other stem
cells, MSCs could respond to viral infections by the alteration
of ISGs in two ways. Upon exposure of MSCs to virions, the
levels of ISGs increase which can lead to exogenous IFN in
other cells. Therefore, MSCs display both intrinsic and induc-
ible ISG-associated antiviral activities [144]. These data likely
demonstrate that local and systemic application of MSCs con-
tributes to therapeutic outcomes in COVID-19 patients
through the alteration of anti-viral mechanisms in other cells.
Compared to mature cells, IFITM family members are abun-
dantly seen on the stem cell surface [145, 146]. Of note, the
suppression of IFITM1, 2, and 3 in ESCs sensitizes these cells
to viral infection, suggesting the anti-viral activity of IFITMs
[145, 146]. The activation of ISGs could provoke other anti-
viral mechanisms, such as BST2, MOV10, and IDO1, in the
human and mouse stem cells. These elements bind directly to
retroviruses. Similarly, enhanced ISGs activity with the in-
crease of BST2, MOV10, and IDO1 factors could suppress
the activity of endogenous retroviruses [122, 123].

Antiviral Activity of RNA Interference in Stem Cells

RNAi is a biological phenomenon by which specific genes are
silenced by using nucleic acids consisted of 20–30 nucleotides
[62, 127, 147]. It has been shown that RNAi has a unique
antiviral activity [127]. Upon viral infection, a cytoplasmic
RNase, namely Dicer, hydrolyzes dsRNA, and produce a
large set of siRNAs [127]. These siRNAs are not free inside
the cytosol thus captured by Ago. The combination of
siRNAs-Ago with other proteins forms a multi-protein com-
plex namely RISC. After maturation of the RISC structure,
siRNAs are degraded according to their sequences [74]. It
was postulated that Ago and RNAi need each other for max-
imum activities. For example, Schuster and colleagues discov-
ered a less potent anti-viral activity of RNAi against + sRNA
viruses like yellow fever virus, and encephalomyocarditis vi-
rus in Argonaute-2−/− human cells [62]. Certain viruses cir-
cumvent these innate antiviral responses in different ways. For
instance, Coxsackievirus B3 harbors a viral 3A protein com-
plex with a virus-encoded suppressor of RNAi to inhibit the
activity of eukaryotes RNAi [148]. Even, transfection of cells
with mature siRNAs to stimulate RNAi does not contribute to
the synthesis of long dsRNA [149]. Compared to
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differentiated cells, progenitors and ESCs have the potential to
produce long dsRNAs [150, 151]. On this basis, ESCs have
distinct siRNAs reservoirs that are not detectable in most cells.
It is thought that these siRNAs are originated from dsRNAs
produced by endogenous retrotransposons activity [42, 152,
153]. This capacity enables stem cells to acquire unique anti-
viral defense mechanisms which are largely due to the modu-
lation of RNAi. Transfection of murine ESCs with EMCV
produced intracellular EMCV-derived siRNAs with a certain
size and 3’ overhangs nucleotides [66, 95]. It seems that the
simultaneous degradation of RNAi and the promotion of IFN-
related responses could overlap once anti-viral immunity is
initiated [154, 155]. The suppression of MAVS in mouse em-
bryonic fibroblasts aborted the functionality and collaboration
of dsRNA sensors with IFN products [96]. Unlike mature
cells, stem cells commonly use different anti-viral pathways
once infected with viruses to alert other cells and to regulate
their activity. For instance, the initiation of IFN response in
HepSCs, activates cytotoxic T cells, NK cells, and dendritic
cells and prevents viral infections in most cells [156]. The
existence of endogenous retroviral infection in stem cells is
another mechanism by which these cells could decrease the

viral entry [140]. This pattern suggests that stem cells limit the
integration of exogenous viral genome with DNA by the oc-
cupation of common integration sites [140]. Studies have
shown that the activation of HERVK endogenous retroviruses
in ESCs produce Rec, an RNA transport factor, and activates
IFITM1, leading to restricted viral replication [140]. This
strategy will work when common integration sites are pre-
occupied by the endogenous viral genome or the same repli-
cation machinery systems exploited.

TLRs Have Antiviral Activity in Stem Cells

The TLR signaling pathway plays a fundamental role in most
cells during inflammation. TLRs belong to the type 1 integral
proteins and are stimulated by different PAMPs, for example,
proteins, lipids, nucleic acids, lipoproteins, etc. [157].
Different subsets of TLRs including TLR1, 2, 4, 5, 6, and 11
are located at cell membranes while other family members
such as TLR3, 7, 8, 9 are associated with organelles like ly-
sosomes, endosomes, and reticular endothelium (Fig. 4)
[158]. Like mature cells, stem cells could express different
classes of TLRs [159]. The activation of TLRs could increase

Fig. 4 Cross-talk between TLRs andNrF2 signaling pathways in the viral
infection. Endosomal TLRs including TLR 3,4,7,8,9 recognize the viral
ssRNA and dsRNA. Stimulation of TLR7 by viral RNAs causes the
production of NADPH oxidase which is an imperative factor in the
connection of two signaling pathways and in results activation of NrF2
downstream pathways. Additionally, activation of TLR3 leads to the
production of other anti-oxidant elements related to NrF2 pathways such
as HO-1, which participates in the activation process of stress response

transcription factors includingNrF2, NF-KB, andAP-1. TLR 3 and 7 also
appreciate the initiation of autophagy which can deliver the nucleic acid
fragments of viruses to the endosomal TLRs and leads them to degrada-
tion by recruiting autolysosomes. On the other hand, NrF2 signaling
pathways are in a relationship with the stemness of stem cells by
inhibiting the activation of OCT4 and NANOG proteins by using ubiq-
uitin/proteasome. The illustration was created with BioRender.com
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the synthesis of different pro-inflammatory cytokines and reg-
ulate paracrine activity in stem cells via the modulation of the
NF- B/IKB/TRIF/MYD88 pathway, leading to the inhibition
of apoptotic changes [160, 161]. Among TLRs, endosomal
TRLs such as TLR3, 7, and 8 are recognized with the potential
to detect and bind to viral ssRNA and dsRNA (Fig. 4) [162].
Control of inflammatory responses is an efficient strategy that
allows the stem cells to escape from apoptosis [163]. As de-
scribed previously, the apoptosis signaling pathway is com-
monly induced in the host cells to limit the spread of the virus
to juxtaposed cells [164]. Concerning certain antiviral proper-
ties and crucial importance for stem cell survival, it appears
that apoptosis is differently regulated in these cells [165].
Unlike differentiated cells, stem cells are highly resistant to
apoptosis [165]. In other words, a greater degree of resistance
to apoptotic changes makes stem cells efficiently eliminate
viral particles by using inflammatory mechanisms that are
not well-tolerated by differentiated cells. Whether apoptosis
is involved in viral clearance in stem cells has been the subject
of debate.

Among different factors triggered after stimulation of
TLRs, the Nrf2 signaling pathway plays a pivotal role in the
regulation of inflammatory [166]. Upon activation of TLRs in
stem cells, both NF- B and Nrf2 factors are recruited [167,
168]. When activated, Nrf2 regulates the activity of antioxi-
dant enzymes, cytoprotective properties against endogenous
and exogenous stresses, and autophagolysosome formation
(Fig. 4) [169, 170]. In normal conditions, Nrf2 is bounded to
actin-associated Keap1 protein inside the cytosol to keep Nrf2
away from proteasomal degradation following ubiquitination
[171]. Under conditions like oxidative stress, the NrF2-keap1
complex is degraded coincides with markedly decreased E3
ligase activity of Keap1. Downstream signaling events lead to
NrF2 phosphorylation by protein kinase C activity and trans-
location into the nucleus [172, 173].

Pluripotency factors such as OCT4 and NANOG are highly
ubiquitinated in stem cells and co-localized with Nrf2 to main-
tain stemness feature [172, 173]. The heterodimerization of
NrF2 with Maf proteins in the nucleus produces anti-oxidant
elements [174]. Besides, the activation of endosomal TLRs
such as TLR3, 7, 8, and 9 promotes the formation of Nrf2-
keap1 and prominent anti-oxidant capacity in stem cells [174,
175]. It has been shown that the stimulation of TLR7 by
Resiquimod leads to NADPH oxidase activation and promo-
tion of the Nrf2 signaling pathway [176]. Similar to these
changes, the up-regulation of TLR3 could also promote Nrf2
anti-oxidant activity via the regulation of HO-1 [177]. HO-1 is
touted as key transcriptional factors of stress responses includ-
ing Nrf2, NF- B, and plasminogen activator inhibitor-1 [178].
Owing to the distinct activity of the Nrf2 in stem cells and its
association with TLRs [179], it seems that the promotion of
inflammatory response and Nrf2 activity is integral to antiviral
defense in these cells.

Like a close association of the Nrf2 signaling pathway with
diverse cellular activities, Nrf2 could also activate autophagy
and proteasomal activity during pathological conditions [179,
180]. To this end, Nrf2 controls the biogenesis of the 20S
proteasome via the modulation of chaperones activity [179,
180]. The was recently shown that Nrf2 regulates proteasome
activity in ESCs via the action of the proteasome maturation
protein [172]. Upon viral entry, the close crosstalk between
autophagy and TLR signaling pathway potentiates the cells to
deliver the genomic fragments of viruses to endosomal TLRs
and activates antiviral innate immune response (Fig. 4) [181].
Interestingly, the inhibition of MYD88 and TRIF, belonging
to the TLR signaling pathway, prevents autophagic response
in stem cells [182]. Besides, autophagy machinery digest sev-
eral viral components by the formation of autolysosomes
[183]. The activation of TLR3 and 7 promotes autophagic
responses once ssRNA and dsRNA are released inside the
host cells [182]. Upon activation of TLR3 and 7, the formation
of the Beclin-1-Vsp34 complex initiates consecutive autoph-
agic reactions [182]. The recruitment of selective autophagy
receptors such as NBR, NDP52, p62 helps cells to kill intra-
cellular virions [184]. These autophagy receptors possess cap-
ture domains like LC3-interacting regions which direct viral
components to autophagosomes [185]. For example, the cap-
sid of Sindbis, as RNA positive virus, is captured by a p62-
dependent manner without using the ubiquitin system [185].
The exact mechanisms of the autophagy machinery system
have been remained unclear. Overall, TLRs could have an
axis role in the antiviral mechanisms of stem cells. These
properties of stem cells might be a shed of light to use them
in the field of stem cell therapy for the rest of human life
especially for COVID-19 which has been spread globally.

The Antiviral Activity of Stem Cell Via EVs

The shedding of viral particles using EVs such as exosomes is
an alternative defensive strategy in stem cells to eliminate
virions [186]. Exosomes are nanosize vesicles ranging from
40 to 200 nm with the ability to carry the arrays of genomic
and proteomic elements out of the cells. These particles main-
tain reciprocal paracrine crosstalk between the different cells
[187]. It has been shown that the activation of exocytosis
mechanisms is a compensatory mechanism in virus-infected
cells [186]. EVs have some structural similarities to viruses.
Due to the existence of inherent similarities between the EVs
and viruses, in particular, small size dimensions, it is logical to
propose that viruses and EVs use common mechanisms for
intracellular trafficking, cell entry, and exocytosis (Fig. 5)
[188, 189]. Upon the replication of viral particles inside the
host cells, EVs act as delivery vectors. EVs collaborate with
virus assembly machinery to pack viral-derived nucleic acids,
lipids, proteins, and lipids, and take them to out of the cells
[190]. Concerning similarities in the mechanism of EVs
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and viruses biogenesis, sophisticated manipulations could
lead to the control of virus replication or vice versa.
Notably, exosomes isolated from virus-infected cells har-
bor genetic elements which further inhibit the propagation
of the virus in neighboring cells. For instance, studies have
shown that up-regulation of let-7f, miR-145, miR-199a,
and miR-221 in exosomes from umbilical MSCs can inhib-
it the replication of the Hepatitis C virus in the other cells.
These genetic tools enter the acceptor cells and inhibit the
propagation of virions after direct binding to viral genomes
via targeting host factor insulin-like growth factor 2
mRNA-binding protein 1 [191, 192]. Of course, the shed-
ding of viral particles from stem cells could decrease the
intracellular accumulation of viral bodies meanwhile in-
creases the risk of viral infection in neighboring cells.
Based on recent studies, it has been shown that some
exosomal microRNAs could regulate the specific genes
correlated with SARS-CoV-2 RNA replication [193,
194]. The existence of miR-23b in bone marrow MSCs
exosomes could inhibit ORF8 protein and limit the inter-
species transmission of the SARS-CoV-2 virus [193, 194].
Besides, exosomal miR-1246 has the potential to regulates
angiogenesis by the activation of the Smad 1/5/8 signaling
cascade. This miRNA also controls ORF3a, a sodium or
calcium ion channel protein, and thus the replication of the
virus is diminished [195, 196].

The hemagglutinin-esterase, a glycoprotein, is located on a
viral envelope that facilitates reversible attachment to O-
acetylated sialic acids via lectin-like activity [197]. This en-
zyme exists in both Influenza and coronaviruses like the
SARS-CoV-2 virus. It was suggested that MSCs exosomes
could inhibit the hemagglutination activity of influenza virus-
es and decrease viral entry to most cells [198]. Taken together,
the existence of exocytosis in stem cells helps these cells to
decrease the load of virions inside cytosol and to use
exocytosis-related mechanisms in neighboring cells to inhibit
the transfection rate.

Conclusions

Commensurate with the above-mentioned comments, it is log-
ical to mention that stem cells are less sensitive to
coronaviruses such as SARS-CoV-2, unlike differentiated
cells. This concept is not absolute and caution must be con-
sidered when we talk about the SARS-CoV-2 resistance of
stem cells. There is close crosstalk between the stem cells
and different cells within different organs to maintain basal
stem cell function. Therefore, it seems that the occurrence and
duration of COVID-19 and injury of mature cells could inter-
rupt reciprocal crosstalk between undifferentiated and

Fig. 5 The similarity in exosome biogenesis and virus assembly system makes virus to use exosome biogenesis pathways for delivery and cell exit. The
illustration was created with BioRender.com
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differentiated cells which further affects the supportive role of
other cells on stem cells. Concerning the existence of various
escaping ways in stem cells to adopt a virus-resistant state, it is
less likely these cells become infected with the coronaviruses
in the early stages. If we hypothesize that they are eventually
will be infected, they are not a front-line cell target.
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